Mining and Classifying Image Posts on Social Media to Analyse Fires
نویسندگان
چکیده
We propose a methodology to study the occurrence of fires through image posts on Flickr; crowd-sourcing information from a noisy social media dataset can estimate the presence of fires. We collect several years worth of photos and associated metadata using fire-related search terms. We use an image classification model to detect geotagged photos that are further analysed to determine if a fire event did occur at a particular time and place. Furthermore, a case study investigates image features and spatio-temporal elements in the metadata, as well as location information contained in camera EXIF data.
منابع مشابه
Predicting Brexit: Classifying Agreement is Better than Sentiment and Pollsters
On June 23rd 2016, UK held the referendum which ratified the exit from the EU. While most of the traditional pollsters failed to forecast the final vote, there were online systems that hit the result with high accuracy using opinion mining techniques and big data. Starting one month before, we collected and monitored millions of posts about the referendum from social media conversations, and ex...
متن کاملDetecting Suspicious Profiles Using Text Analysis within Social Media
The exponential advancement in information and communication technology has fostered the emergence of new channels for online discussion and has also reduced distances between people. Unfortunately, malicious people take advantage of this technological achievement in the sense that they use it for illegal purposes. In social media, the users produce several and various formats of suspicious pos...
متن کاملSimilarity measurement for describe user images in social media
Online social networks like Instagram are places for communication. Also, these media produce rich metadata which are useful for further analysis in many fields including health and cognitive science. Many researchers are using these metadata like hashtags, images, etc. to detect patterns of user activities. However, there are several serious ambiguities like how much reliable are these informa...
متن کاملTeam UKNLP: Detecting ADRs, Classifying Medication Intake Messages, and Normalizing ADR Mentions on Twitter
This paper describes the systems we developed for all three tasks of the 2nd Social Media Mining for Health Applications Shared Task at AMIA 2017. The first task focuses on identifying the Twitter posts containing mentions of adverse drug reactions (ADR). The second task focuses on automatic classification of medication intake messages (among those containing drug names) on Twitter. The last ta...
متن کاملPredicting the Importance of Newsfeed Posts and Social Network Friends
As users of social networking websites expand their network of friends, they are often flooded with newsfeed posts and status updates, most of which they consider to be “unimportant” and not newsworthy. In order to better understand how people judge the importance of their newsfeed, we conducted a study in which Facebook users were asked to rate the importance of their newsfeed posts as well as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016